A Cellular Genetic Algorithm for training Recurrent Neural Networks

نویسندگان

  • Kim W. C. Ku
  • M. W. Mak
  • W. C. Siu
چکیده

Recurrent neural networks (RNNs), with the capability of dealing with spatio-temporal relationship, are more complex than feed-forward neural networks. Training of RNNs by gradient descent methods becomes more dii-cult. Therefore, another training method, which uses cellular genetic algorithms, is proposed. In this paper, the performance of training by a gradient descent method is compared with that by a cellular genetic algorithm. Experimental results indicate that the cellular genetic algorithm successfully nds the global optimum, whereas the gradient descent method is trapped in the sub-optima frequently. Furthermore, it is found that the solutions obtained from the cellular genetic algorithm have better generalization performance than that of the gradient descent method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the improvement of the real time recurrent learning algorithm for recurrent neural networks

This paper reviews diierent approaches to improving the real time recurrent learning (RTRL) algorithm and attempts to group them into common frameworks. The characteristics of sub-grouping strategy, mode exchange RTRL, and cellular genetic algorithms are discussed. The relationships between these algorithms are highlighted and their time complexities and convergence capability are compared. The...

متن کامل

Modeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm

Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...

متن کامل

Application of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries

Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...

متن کامل

Optimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network

A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...

متن کامل

A Comparative Study of Evolutionary Algorithms for Training Elman Recurrent Neural Networks to Predict Autonomous Indebtedness

This paper presents a training model for Elman recurrent neural networks, based on evolutionary algorithms. The proposed evolutionary algorithms are classic genetic algorithms, the multimodal clearing algorithm and the CHC algorithm. These training algorithms are compared in order to assess the effectiveness of each training model when predicting Spanish autonomous indebtedness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995